Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Structure ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38582076

RESUMO

The translation factor IF5A is highly conserved in Eukarya and Archaea and undergoes a unique post-translational hypusine modification by the deoxyhypusine synthase (DHS) enzyme. DHS transfers the butylamine moiety from spermidine to IF5A using NAD as a cofactor, forming a deoxyhypusine intermediate. IF5A is a key player in protein synthesis, preventing ribosome stalling in proline-rich sequences during translation elongation and facilitating translation elongation and termination. Additionally, human eIF5A participates in various essential cellular processes and contributes to cancer metastasis, with inhibiting hypusination showing anti-proliferative effects. The hypusination pathway of IF5A is therefore an attractive new therapeutic target. We elucidated the 2.0 Å X-ray crystal structure of the archaeal DHS-IF5A complex, revealing hetero-octameric architecture and providing a detailed view of the complex active site including the hypusination loop. This structure, along with biophysical data and molecular dynamics simulations, provides new insights into the catalytic mechanism of the hypusination reaction.

2.
JACS Au ; 4(2): 432-440, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425897

RESUMO

Peptide-based covalent inhibitors targeted to nucleophilic protein residues have recently emerged as new modalities to target protein-protein interactions (PPIs) as they may provide some benefits over more classic competitive inhibitors. Covalent inhibitors are generally targeted to cysteine, the most intrinsically reactive amino acid residue, and to lysine, which is more abundant at the surface of proteins but much less frequently to histidine. Herein, we report the structure-guided design of targeted covalent inhibitors (TCIs) able to bind covalently and selectively to the bacterial sliding clamp (SC), by reacting with a well-conserved histidine residue located on the edge of the peptide-binding pocket. SC is an essential component of the bacterial DNA replication machinery, identified as a promising target for the development of new antibacterial compounds. Thermodynamic and kinetic analyses of ligands bearing different mild electrophilic warheads confirmed the higher efficiency of the chloroacetamide compared to Michael acceptors. Two high-resolution X-ray structures of covalent inhibitor-SC adducts were obtained, revealing the canonical orientation of the ligand and details of covalent bond formation with histidine. Proteomic studies were consistent with a selective SC engagement by the chloroacetamide-based TCI. Finally, the TCI of SC was substantially more active than the parent noncovalent inhibitor in an in vitro SC-dependent DNA synthesis assay, validating the potential of the approach to design covalent inhibitors of protein-protein interactions targeted to histidine.

3.
RNA ; 30(3): 200-212, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164596

RESUMO

rRNA modifications play crucial roles in fine-tuning the delicate balance between translation speed and accuracy, yet the underlying mechanisms remain elusive. Comparative analyses of the rRNA modifications in taxonomically distant bacteria could help define their general, as well as species-specific, roles. In this study, we identified a new methyltransferase, RlmQ, in Staphylococcus aureus responsible for the Gram-positive specific m7G2601, which is not modified in Escherichia coli (G2574). We also demonstrate the absence of methylation on C1989, equivalent to E. coli C1962, which is methylated at position 5 by the Gram-negative specific RlmI methyltransferase, a paralog of RlmQ. Both modifications (S. aureus m7G2601 and E. coli m5C1962) are situated within the same tRNA accommodation corridor, hinting at a potential shared function in translation. Inactivation of S. aureus rlmQ causes the loss of methylation at G2601 and significantly impacts growth, cytotoxicity, and biofilm formation. These findings unravel the intricate connections between rRNA modifications, translation, and virulence in pathogenic Gram-positive bacteria.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Staphylococcus aureus/genética , Proteínas de Escherichia coli/genética , RNA , Virulência/genética , RNA Ribossômico 23S/genética , Metiltransferases/genética
4.
Methods Mol Biol ; 2741: 273-287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217659

RESUMO

Regulatory RNAs, as well as many RNA families, contain chemically modified nucleotides, including pseudouridines (ψ). To map nucleotide modifications, approaches based on enzymatic digestion of RNA followed by nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) analysis were implemented several years ago. However, detection of ψ by mass spectrometry (MS) is challenging as ψ exhibits the same mass as uridine. Thus, a chemical labeling strategy using acrylonitrile was developed to detect this mass-silent modification. Acrylonitrile reacts specifically to ψ to form 1-cyanoethylpseudouridine (Ceψ), resulting in a mass shift of ψ detectable by MS. Here, a protocol detailing the steps from the purification of RNA by polyacrylamide gel electrophoresis, including in-gel labeling of ψ, to MS data interpretation to map ψ and other modifications is proposed. To demonstrate its efficiency, the protocol was applied to bacterial regulatory RNAs from E. coli: 6S RNA and transfer-messenger RNA (tmRNA, also known as 10Sa RNA). Moreover, ribonuclease P (RNase P) was also mapped using this approach. This method enabled the detection of several ψ at single nucleotide resolution.


Assuntos
Acrilonitrila , Pseudouridina , Humanos , Pseudouridina/genética , Espectrometria de Massas em Tandem , Escherichia coli/genética , Escherichia coli/metabolismo , RNA , RNA Bacteriano/metabolismo , Nucleotídeos , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética
5.
RNA ; 30(2): 105-112, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38071475

RESUMO

Ribosomal RNA contains many posttranscriptionally modified nucleosides, particularly in the functional parts of the ribosome. The distribution of these modifications varies from one organism to another. In Bacillus subtilis, the model organism for Gram-positive bacteria, mass spectrometry experiments revealed the presence of 7-methylguanosine (m7G) at position 2574 of the 23S rRNA, which lies in the A-site of the peptidyl transferase center of the large ribosomal subunit. Testing several m7G methyltransferase candidates allowed us to identify the RlmQ enzyme, encoded by the ywbD open reading frame, as the MTase responsible for this modification. The enzyme methylates free RNA and not ribosomal 50S or 70S particles, suggesting that modification occurs in the early steps of ribosome biogenesis.


Assuntos
Peptidil Transferases , Peptidil Transferases/genética , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/química , Bacillus subtilis/genética , RNA/química , Metiltransferases/genética
7.
Nat Plants ; 9(12): 2031-2041, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37945696

RESUMO

RNase P is the essential activity that performs the 5' maturation of transfer RNA (tRNA) precursors. Beyond the ancestral form of RNase P containing a ribozyme, protein-only RNase P enzymes termed PRORP were identified in eukaryotes. In human mitochondria, PRORP forms a complex with two protein partners to become functional. In plants, although PRORP enzymes are active alone, we investigate their interaction network to identify potential tRNA maturation complexes. Here we investigate functional interactions involving the Arabidopsis nuclear RNase P PRORP2. We show, using an immuno-affinity strategy, that PRORP2 occurs in a complex with the tRNA methyl transferases TRM1A and TRM1B in vivo. Beyond RNase P, these enzymes can also interact with RNase Z. We show that TRM1A/TRM1B localize in the nucleus and find that their double knockout mutation results in a severe macroscopic phenotype. Using a combination of immuno-detections, mass spectrometry and a transcriptome-wide tRNA sequencing approach, we observe that TRM1A/TRM1B are responsible for the m22G26 modification of 70% of cytosolic tRNAs in vivo. We use the transcriptome wide tRNAseq approach as well as RNA blot hybridizations to show that RNase P activity is impaired in TRM1A/TRM1B mutants for specific tRNAs, in particular, tRNAs containing a m22G modification at position 26 that are strongly downregulated in TRM1A/TRM1B mutants. Altogether, results indicate that the m22G-adding enzymes TRM1A/TRM1B functionally cooperate with nuclear RNase P in vivo for the early steps of cytosolic tRNA biogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Ribonuclease P/genética , Ribonuclease P/química , Ribonuclease P/metabolismo , Proteínas de Arabidopsis/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Processamento Pós-Transcricional do RNA
8.
Nucleic Acids Res ; 51(14): 7580-7601, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37254812

RESUMO

The selenocysteine (Sec) tRNA (tRNA[Ser]Sec) governs Sec insertion into selenoproteins by the recoding of a UGA codon, typically used as a stop codon. A homozygous point mutation (C65G) in the human tRNA[Ser]Sec acceptor arm has been reported by two independent groups and was associated with symptoms such as thyroid dysfunction and low blood selenium levels; however, the extent of altered selenoprotein synthesis resulting from this mutation has yet to be comprehensively investigated. In this study, we used CRISPR/Cas9 technology to engineer homozygous and heterozygous mutant human cells, which we then compared with the parental cell lines. This C65G mutation affected many aspects of tRNA[Ser]Sec integrity and activity. Firstly, the expression level of tRNA[Ser]Sec was significantly reduced due to an altered recruitment of RNA polymerase III at the promoter. Secondly, selenoprotein expression was strongly altered, but, more surprisingly, it was no longer sensitive to selenium supplementation. Mass spectrometry analyses revealed a tRNA isoform with unmodified wobble nucleotide U34 in mutant cells that correlated with reduced UGA recoding activities. Overall, this study demonstrates the pleiotropic effect of a single C65G mutation on both tRNA phenotype and selenoproteome expression.


Assuntos
Selênio , Humanos , Códon de Terminação , Mutação , Selênio/farmacologia , Selênio/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Proteoma
9.
RNA ; 29(5): 551-556, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36759127

RESUMO

Analysis of the profile of the tRNA modifications in several Archaea allowed us to observe a novel modified uridine in the V-loop of several tRNAs from two species: Pyrococcus furiosus and Sulfolobus acidocaldarius Recently, Ohira and colleagues characterized 2'-phosphouridine (Up) at position 47 in tRNAs of thermophilic Sulfurisphaera tokodaii, as well as in several other archaea and thermophilic bacteria. From the presence of the gene arkI corresponding to the RNA kinase responsible for Up47 formation, they also concluded that Up47 should be present in tRNAs of other thermophilic Archaea Reanalysis of our earlier data confirms that the unidentified residue in tRNAs of both P. furiosus and S. acidocaldarius is indeed 2'-phosphouridine followed by m5C48. Moreover, we find this modification in several tRNAs of other Archaea and of the hyperthermophilic bacterium Aquifex aeolicus.


Assuntos
Archaea , Sulfolobus , Archaea/genética , Bactérias/genética , Sulfolobus/genética
10.
Anal Chem ; 95(2): 1608-1617, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36598775

RESUMO

As RNA post-transcriptional modifications are of growing interest, several methods were developed for their characterization. One of them established for their identification, at the nucleosidic level, is the hyphenation of separation methods, such as liquid chromatography or capillary electrophoresis, to tandem mass spectrometry. However, to our knowledge, no software is yet available for the untargeted identification of RNA post-transcriptional modifications from MS/MS data-dependent acquisitions. Thus, very long and tedious manual data interpretations are required. To meet the need of easier and faster data interpretation, a new user-friendly search engine, called Nucleos'ID, was developed for CE-MS/MS and LC-MS/MS users. Performances of this new software were evaluated on CE-MS/MS data from nucleoside analyses of already well-described Saccharomyces cerevisiae transfer RNA and Bos taurus total tRNA extract. All samples showed great true positive, true negative, and false discovery rates considering the database size containing all modified and unmodified nucleosides referenced in the literature. The true positive and true negative rates obtained were above 0.94, while the false discovery rates were between 0.09 and 0.17. To increase the level of sample complexity, untargeted identification of several RNA modifications from Pseudomonas aeruginosa 70S ribosome was achieved by the Nucleos'ID search following CE-MS/MS analysis.


Assuntos
Nucleosídeos , Espectrometria de Massas em Tandem , Animais , Bovinos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Nucleosídeos/análise , Ferramenta de Busca , RNA de Transferência
11.
Artigo em Inglês | MEDLINE | ID: mdl-35917777

RESUMO

As part of RNA characterization, the identification of post-transcriptional modifications can be performed using hyphenation of separation methods with mass spectrometry. To identify RNA modifications with those methods, a first total digestion followed by a dephosphorylation step are usually required to reduce RNA to nucleosides. Even though effective digestion and dephosphorylation are essential to avoid further complications in analysis and data interpretation, to our knowledge, no standard protocol is yet referenced in the literature. Therefore, the aim of this work is to optimize the dephosphorylation step using a total extract of transfer RNA (tRNA)1 from B. taurus as a model and to determine and fix two protocols, leading to complete dephosphorylation, based on time and bacterial alkaline phosphatase (BAP)2 consumptions. Capillary electrophoresis-tandem mass spectrometry (CE-MS/MS) was used to estimate the dephosphorylation efficiency of both protocols on many canonical and modified nucleotides. For a timesaving protocol, we established that full dephosphorylation was obtained after a 4-hour incubation at 37 °C with 7.5 U of BAP for 1 µg of tRNA. And for a BAP-saving protocol, we established that full dephosphorylation was obtained 3.0 U of BAP after an overnight incubation at 37 °C. Both protocols are suitable for quantitative analyses as no loss of analytes is expected. Moreover, they can be widely used for all other RNA classes, including messenger RNA or ribosomal RNA.


Assuntos
RNA , Espectrometria de Massas em Tandem , Nucleosídeos/análise , Nucleotídeos , RNA/química , RNA de Transferência , Espectrometria de Massas em Tandem/métodos
12.
RNA ; 28(9): 1185-1196, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35710145

RESUMO

A previous bioinformatic analysis predicted that the ysgA open reading frame of Bacillus subtilis encodes an RNA methyltransferase of the SPOUT superfamily. Here we show that YsgA is the 2'-O-methyltransferase that targets position G2553 (Escherichia coli numbering) of the A-loop of 23S rRNA. This was shown by a combination of biochemical and mass spectrometry approaches using both rRNA extracted from B. subtilis wild-type or ΔysgA cells and in vitro synthesized rRNA. When the target G2553 is mutated, YsgA is able to methylate the ribose of adenosine. However, it cannot methylate cytidine nor uridine. The enzyme modifies free 23S rRNA but not the fully assembled ribosome nor the 50S subunit, suggesting that the modification occurs early during ribosome biogenesis. Nevertheless, ribosome subunits assembly is unaffected in a B. subtilis ΔysgA mutant strain. The crystal structure of the recombinant YsgA protein, combined with mutagenesis data, outlined in this article highlights a typical SPOUT fold preceded by an L7Ae/L30 (eL8/eL30 in a new nomenclature) amino-terminal domain.


Assuntos
Metiltransferases , RNA Ribossômico 23S , Domínio AAA , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Escherichia coli/metabolismo , Guanosina/análogos & derivados , Metilação , Metiltransferases/metabolismo , Fases de Leitura Aberta , RNA Ribossômico 23S/química
13.
J Med Chem ; 64(23): 17063-17078, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34806883

RESUMO

The bacterial DNA sliding clamp (SC), or replication processivity factor, is a promising target for the development of novel antibiotics. We report a structure-activity relationship study of a new series of peptides interacting within the Escherichia coli SC (EcSC) binding pocket. Various modifications were explored including N-alkylation of the peptide bonds, extension of the N-terminal moiety, and introduction of hydrophobic and constrained residues at the C-terminus. In each category, single modifications were identified that increased affinity to EcSC. A combination of such modifications yielded in several cases to a substantially increased affinity compared to the parent peptides with Kd in the range of 30-80 nM. X-ray structure analysis of 11 peptide/EcSC co-crystals revealed new interactions at the peptide-protein interface (i.e., stacking interactions, hydrogen bonds, and hydrophobic contacts) that can account for the improved binding. Several compounds among the best binders were also found to be more effective in inhibiting SC-dependent DNA synthesis.


Assuntos
Escherichia coli/química , Peptídeos/química , Cristalização , Cristalografia por Raios X , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Conformação Proteica , Relação Estrutura-Atividade , Termodinâmica
14.
Nucleic Acids Res ; 49(18): 10618-10629, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34530443

RESUMO

Malaria is a life-threatening and devastating parasitic disease. Our previous work showed that parasite development requires the import of exogenous transfer RNAs (tRNAs), which represents a novel and unique form of host-pathogen interaction, as well as a potentially druggable target. This import is mediated by tRip (tRNA import protein), a membrane protein located on the parasite surface. tRip displays an extracellular domain homologous to the well-characterized OB-fold tRNA-binding domain, a structural motif known to indiscriminately interact with tRNAs. We used MIST (Microarray Identification of Shifted tRNAs), a previously established in vitro approach, to systematically assess the specificity of complexes between native Homo sapiens tRNAs and recombinant Plasmodium falciparum tRip. We demonstrate that tRip unexpectedly binds to host tRNAs with a wide range of affinities, suggesting that only a small subset of human tRNAs is preferentially imported into the parasite. In particular, we show with in vitro transcribed constructs that tRip does not bind specific tRNAs solely based on their primary sequence, hinting that post-transcriptional modifications modulate the formation of our host/parasite molecular complex. Finally, we discuss the potential utilization of the most efficient tRip ligands for the translation of the parasite's genetic information.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Plasmodium falciparum , Proteínas de Protozoários/metabolismo , RNA de Transferência/metabolismo , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Protozoários/química , Alinhamento de Sequência
16.
Nucleic Acids Res ; 49(11): 6529-6548, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34057470

RESUMO

Post-transcriptional modification of tRNA wobble adenosine into inosine is crucial for decoding multiple mRNA codons by a single tRNA. The eukaryotic wobble adenosine-to-inosine modification is catalysed by the ADAT (ADAT2/ADAT3) complex that modifies up to eight tRNAs, requiring a full tRNA for activity. Yet, ADAT catalytic mechanism and its implication in neurodevelopmental disorders remain poorly understood. Here, we have characterized mouse ADAT and provide the molecular basis for tRNAs deamination by ADAT2 as well as ADAT3 inactivation by loss of catalytic and tRNA-binding determinants. We show that tRNA binding and deamination can vary depending on the cognate tRNA but absolutely rely on the eukaryote-specific ADAT3 N-terminal domain. This domain can rotate with respect to the ADAT catalytic domain to present and position the tRNA anticodon-stem-loop correctly in ADAT2 active site. A founder mutation in the ADAT3 N-terminal domain, which causes intellectual disability, does not affect tRNA binding despite the structural changes it induces but most likely hinders optimal presentation of the tRNA anticodon-stem-loop to ADAT2.


Assuntos
Adenosina Desaminase/química , Adenosina/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Movimento Celular , Cristalografia por Raios X , Ferredoxinas/química , Inosina/metabolismo , Camundongos , Modelos Moleculares , Mutação , Neurônios/fisiologia , Domínios Proteicos , RNA de Transferência/química , RNA de Transferência/metabolismo
17.
RNA ; 26(12): 1957-1975, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32994183

RESUMO

To improve and complete our knowledge of archaeal tRNA modification patterns, we have identified and compared the modification pattern (type and location) in tRNAs of three very different archaeal species, Methanococcus maripaludis (a mesophilic methanogen), Pyrococcus furiosus (a hyperthermophile thermococcale), and Sulfolobus acidocaldarius (an acidophilic thermophilic sulfolobale). Most abundant isoacceptor tRNAs (79 in total) for each of the 20 amino acids were isolated by two-dimensional gel electrophoresis followed by in-gel RNase digestions. The resulting oligonucleotide fragments were separated by nanoLC and their nucleotide content analyzed by mass spectrometry (MS/MS). Analysis of total modified nucleosides obtained from complete digestion of bulk tRNAs was also performed. Distinct base- and/or ribose-methylations, cytidine acetylations, and thiolated pyrimidines were identified, some at new positions in tRNAs. Novel, some tentatively identified, modifications were also found. The least diversified modification landscape is observed in the mesophilic Methanococcus maripaludis and the most complex one in Sulfolobus acidocaldarius Notable observations are the frequent occurrence of ac4C nucleotides in thermophilic archaeal tRNAs, the presence of m7G at positions 1 and 10 in Pyrococcus furiosus tRNAs, and the use of wyosine derivatives at position 37 of tRNAs, especially those decoding U1- and C1-starting codons. These results complete those already obtained by others with sets of archaeal tRNAs from Methanocaldococcus jannaschii and Haloferax volcanii.


Assuntos
Mathanococcus/genética , Nucleotídeos/química , Pyrococcus furiosus/genética , RNA de Transferência/química , RNA de Transferência/genética , Sulfolobus acidocaldarius/genética , Sequência de Bases , Conformação de Ácido Nucleico , RNA Arqueal/química , RNA Arqueal/genética
18.
Anal Chem ; 92(10): 7363-7370, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32343557

RESUMO

Over the past decade there has been a growing interest in RNA modification analysis. High performance liquid chromatography-tandem mass spectrometry coupling (HPLC-MS/MS) is classically used to characterize post-transcriptional modifications of ribonucleic acids (RNAs). Here we propose a novel and simple workflow based on capillary zone electrophoresis-tandem mass spectrometry (CE-MS/MS), in positive mode, to characterize RNA modifications at nucleoside and oligonucleotide levels. By first totally digesting the purified RNA, prior to CE-MS/MS analysis, we were able to identify the nucleoside modifications. Then, using a bottom-up approach, sequencing of the RNAs and mapping of the modifications were performed. Sequence coverages from 68% to 97% were obtained for four tRNAs. Furthermore, unambiguous identification and mapping of several modifications were achieved.


Assuntos
RNA de Transferência/metabolismo , Saccharomyces cerevisiae/química , Cromatografia Líquida de Alta Pressão , Eletroforese Capilar , Processamento Pós-Transcricional do RNA , RNA de Transferência/química , RNA de Transferência/isolamento & purificação , Espectrometria de Massas em Tandem
19.
Methods Mol Biol ; 2113: 101-110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32006310

RESUMO

RNA modification mapping by mass spectrometry (MS) is based on the use of specific ribonucleases (RNases) that generate short oligonucleotide digestion products which are further separated by nano-liquid chromatography and analyzed by MS and MS/MS. Recent developments in MS instrumentation allow the possibility to deeply explore posttranscriptional modifications. Notably, development of nano-liquid chromatography and nano-electrospray drastically increases the detection sensitivity and allows the identification and sequencing of RNA digested fragments separated and extracted from two-dimensional polyacrylamide gels, as long as the mapping and characterization of ribonucleotide modifications.


Assuntos
Mapeamento de Nucleotídeos/métodos , RNA de Transferência/metabolismo , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Nanotecnologia , Processamento Pós-Transcricional do RNA , Análise de Sequência de RNA , Espectrometria de Massas em Tandem
20.
Methods Mol Biol ; 2113: 111-118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32006311

RESUMO

Native electrospray ionization mass spectrometry (native ESI-MS) is a powerful tool to investigate non-covalent biomolecular interactions. It has been widely used to study protein complexes, but only few examples are described for the analysis of complexes involving RNA-RNA interactions. Here, we provide a detailed protocol for native ESI-MS analysis of RNA complexes. As an example, we present the analysis of the HIV-1 genomic RNA dimerization initiation site (DIS) extended duplex dimer bound to the aminoglycoside antibiotic lividomycin.


Assuntos
HIV-1/metabolismo , Paromomicina/análogos & derivados , RNA Viral/química , RNA Viral/metabolismo , Dimerização , HIV-1/genética , Ligantes , Conformação de Ácido Nucleico , Paromomicina/química , Paromomicina/metabolismo , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...